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ABSTRACT 
We investigate  the  rate of convergence of stochastic  basis  elements  to  the  solution of a 
stochastic  operator  equation. As in  deterministic  finite  elements,  the  solution  may  be 
approximately  represented  as  the  linear  combination of basis  elements.  In  the  stochastic 
case,  however,  the  solution  belongs  to  a  Hilbert  space of functions  defined  on  a  cross 
product  domain  endowed  with  the  product of a  deterministic  and  probabilistic  measure. 
We  show that if the  dimension of the  stochastic  space  is  n,  and  the  desired  accuracy  is of 
order E, the  number of stochastic  elements  required  to  achieve  this  level of precision,  in 
the  Galerkin  method,  is  on  the  order  of I In E 1" . 
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1 Introduction 
We consider the stochastic equation where the operator  has been split into a 
deterministic part L and a random part n, 

( L  + rI)u = f. (1.1) 

The domain of L + II is a dense subset of the Hilbert space L2( D 8 0, dp 8 dP),  
more specifically, the domain is a dense linear span of independent functions of 
the form cp(x)+(<), x E D,  5 E R, where cp and 1c, are measurable and IIcp+II < 00 

(I/ cp+ I I E  J cp+dpdP). (Here and in the following we  will use  boldface letters 
to denote vectors, in particular, x = (51, ..., zd) and < = (<I, ..., &).) We will 
assume that L and L + rI are symmetric ((Lu, u) = (u, Lu) and ((L + T)U, u) = 
(u, ( L  +x).) where (cp, +) denotes the inner product on the Hilbert space),  and 
positive-bounded-below ( ( L u , ~ )  2 c2(u,u) = c2 11 u ( I 2 ,  for  some c > 0; similar 
for L + T). 

We  show that  to achieve a precision of level E, assuming that sufficiently 
many of the deterministic elements cp have been chosen, the number of stochas- 
tic elements, +, using the Galerkin method, is on the order of I ln(E)ln. By 
the expression "a precision of level E," we mean that 1 1  u, - u 111 E, where u, 
is the approximate solution given  by the Galerkin method. This assertion im- 
plies that  the computational cost, due to  the stochastic component, is relatively 
inexpensive, provided the dimension of the probability space is not too large. 

The next section summarizes the requisite theorems from Hilbert space the- 
ory. In  the  third section we state and prove our main results. The fourth section 
presents some numerical examples, and  demonstrates the rapid convergence  of 
the stochastic finite elements in the low dimensional case.  Aside from the prac- 
tical interest in the  rate of convergence, this analysis may provide some insight 
into the underlying structure of the random processes that arise in engineering. 

2 Symmetric,  Semi-bounded  Operators 
Many  problems in mathematical physics can be  stated in variational form as 
the function u that minimizes the functional 

F ( u )  = (Au,u) - 2(f ,u) ,  (2.1) 

where A is a symmetric, positive-bounded-below transformation  with domain 
DA C H and range contained in the real Hilbert space H .  (By positive-bounded- 
below  we mean that (Au, u) 2 b2(u,u) = b2 1 1  u \ I 2  for some b > 0.) The 
minimum of the functional F may  be  derived using the associated inner product 
defined  on DA, namely, 

(21, U ) A  E (A% v), (2.2) 

and jl u 11;- ( u , u ) ~ .  We complete the space, denoted HA,  by adjoining the 
limit of the Cauchy sequences in DA; in this case, the limit can be identified 
with elements in H ,  see Riesz-Nagy [5]. 
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The operator A may be extended to a self-adjoint transformation x such 
that, if f E H ,  

for some uo E HA,  where xu = Au for all u E DA. The existence of the 
operator 2 and  the solution to equation(2.3) are derived by applying the Riesz 
representation theorem to  the linear functional R f ( u )  = (f, u). That is, since 
Af is a linear functional on HA,  there exists a unique uo E H A  such that 
hf(u0) = (UO,U)A  and 1)  uo ))I)) f I). We set uo = X-'f, and observe that 

that  the inverse of 2, denoted x- , exists and is bounded; 1 1  X-' 111 b-'. Also, 
it can be shown that  the operator 2- is self-adjoint, see  Riesz-Nagy [5].  

The function that minimizes F is  given by the solution to equation(2.3), 
that is , 

- 
Auo = f, (2.3) 

b 11 x-' I)= b 1) UO 1 1 < 1 1  210 llA<l) f {I, so that 11 2-l.f I ) <  b-' 1 1  f 1 1 .  It follows 

1 

F(u)  = (2% u)  - 2(f, u)  = (u, u ) A  - 2(uO, u ) A  =)I '11 - u0 IIA - 11 u0 111, (2-4) 2 

where ( 1  u ( ( A  is the energy norm defined  by )I u )I;= (xu,u). It follows that 
F(u)  has a unique minimum at u = uo and  the minimum value is - 11 uo / / A ,  
see Mikhlin [4]. 

3 Stochastic Finite Elements 
A mathematical representation for a problem involving random spatial fluctua- 
tions is  given  by the operator  equation 

rl 

where A = L + n, L = LO, J2 = CPi&Li, the Li(x)'s are  deterministic dif- 
ferential operators, u = u(x, 0 ,  f = f ( x ,  <), and  the ti's are zero-mean, 
uncorrelated random variables. Invoking the central limit theorem we are led 
to consider Gaussian variables as possible candidates for the ti's; however, since 
Gaussian deviates can assume arbitrarily large negative values the coefficients 
may  become negative. This problem, however,  is  avoided if  we assume that 
the variates ti are  truncated. Gaussian variables also have the advantage that 
uncorrelated variates are  actually independent. In  the following,  we assume 
that  the t i 's  are independent, identically distributed  (not necessarily Gaussian), 
bounded (P(  )til > y) = 0 for  some y > 0), zero-mean random variables. Addi- 
tionally, we assume that  the solution satisfies a deterministic boundary condition 
C(x)u(x, <) = 0, for x E dD. 

The form of the stochastic  operator in equation (3.1) was derived by re- 
placing the coefficients of the corresponding deterministic differential operator 
with  random coefficients. In  turn,  the Karhunen-Loeve expansion was  used to 
express the random coefficients as a finite orthonormal expansion involving the 
variables ti, see Ghanem and Spanos [2], Ghanem and Red-Horse [3]. 

8 



Let us define the domain DA of A as the linear span of functions of the 
form 'p(x)$(<)  where 'p is  sufficiently differentiable to belong to  the domain 
of the differential operators in expression(3.1), satisfies the boundary condition 
C ( x ) ' p ( x )  = 0, and $(<) is a polynomial in the stochastic variables &. The 
inner product on H is  defined  by 

(u, v) E 11 uvdpdP, (3.2) 

where u = u(x ,  6) and v = v ( x ,  5) are mean square integrable with respect 
to dp(x)  63 dP(<) ,  that is, u,v E H = L2(D €3 0 , d p  63 dP) .  Here, the symbol 
p denotes Lebesgue measure, P(<) equals the joint  distribution of the random 
variables ti, i = 1, .., n, dP(<)=nZ1 p ( f i ) d < i ,  and p(&)  is the probability density 
of ti. (We  use  angled brackets to emphasize that  the underlying measure is a 
product involving a probabilistic measure.) If A is symmetric, positive-bounded- 
below, f E H ,  and DA is dense in H ,  then  the transformation A has an extension 
such that ?1u0 = f has a solution (see the preceding section). 

As we have seen, the problem of solving equation (3.1)  may be replaced by 
the problem of finding the function that minimizes the functional 

F('ZL) E (Xu7 u) - 2(f, u) = (u,  u)A - 2(uO, u)A =I\ 'u. - 210 11.4 - 1 1  210 (3.3) 2 

- where ( U , Z I ) A  = (&v), 1 1  u 1 1 % ~  (u, u ) ~  4 b2 1 1  u 1 1 2 ,  2 extends A,  and 
Auo = f. Let us restrict the domain of A to a finite set of linearly independent 
basis elements, cpj(x) $ k ( < ) ,  1 5 j 5 M ,  1 5 IC 5 N ,  and pose the problem 
of finding the linear combination, u,(x, 6) = Cuj,k'p(x)$(<) ,  that minimizes 
F(u) .  It can be shown that (for the restricted domain) the coefficients of the 
minimizing function satisfy a system of algebraic equations, 

(A'&, ' p j ' $ k t )  = (f, 9 j / $ k t ) ,  (3.4a) 

or, 
M N  x ~ a j , k ( A ( ' p j $ k ) , ' p j / $ k ' )  = (f,cpj44, (3.4b) 

j=1 k = l  

where 1 5 j' 5 M ,  1 5 IC' 5 N ,  (the variational argument is essentially the 
same as in the deterministic case, see Ghanem and Spanos [2] or Fletcher [l]). 
The technique that yields the approximate solution given by equation (3.4) is 
known as the Galerkin method. 

We  may assume that  the basis elements have been orthogonalized with re- 
spect to  the inner product (u,  v). More  specifically, we suppose that  the 'pj 's 
are a subset of the orthogonal basis { 'p j (x) } ,  1 5 j < 00, where ( ' p j ,  'py ) = b j j ? ;  

here Sj,jt denotes the Kronecker delta function and (cpj, cpy) E so 'pj (x)'pjt  (x)dp(x). 
Also,  we assume that  the $k's are a subset of the orthogonal basis of the 
form {$k(<) = n:=, $ki(&)}, where k = (kl, ...) ICn) and $ k i ( < i )  equals the 
orthonormal polynomial in of degree ICi over the space L2( [-y, y], p(&)d&); 
that is, ($ki 7 $k;) = b k i , k i ,  for ($ki 7 $ k ; )  = JJ7 $ki (<i)'$ki (<i)p(&)d<i-  we have 
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($k, &) G J$k(()&t(()dP(() = where 6kk,k) = 1 if k = k', otherwise 
&,kt = 0. 

Our goal is t o  estimate the number of stochastic elements required to produce 
the estimate ua satisfying 1 1  ua - u g  111 E ,  assuming that  the deterministic 
elements can be chosen to provide a desired level of precision.  Towards this 
end, we introduce an equivalent (under certain assumptions on the operators 
Li) problem. Applying to both sides of equation (3.1), we obtain, 

n 

i= 1 

where x E D, I is the identity  operator, g(x,() = Eilf(x,(), and C(x)u(x, ()= 0, 
for x E aD. We assume that both, &, and I + Cy=, &&zilLi ,  are symmetric, 
positive-bounded-below. Additionally, we suppose that Tc - Cy=, pl&EilLi 
is a contraction; that is, 1 1  Tc 111 77 < 1, for some q. Also, we assume that 
and Tc commute. It follows that  the series CEO 1) T'')g 1 1  converges and we 
may write 

z=o 

where uo = uo(x,() is the solution to equation (3.5) and TF I .  In  particular, 
expression (3.6) asserts that uo satisfies equation (3.1), 

00 - 
AUO = Eo(I - T')uo = Eo(I - Tc) C T j g  = Eo9 = f. (3.7) 

1=0 

It follows that we need only estimate the number of basis elements required to 
approximate the solution u g  given by equation (3.5). 

To estimate the  rate of convergence of the stochastic elements we need an 
assumption on the  rate  at which the orthogonal expansion converges to f .  For 
a given 6 > 0, we assume that f(x, 5 )  may be approximated by a function 
fm(x, () such that  the maximum degree of the polynomials in & of fm do not 
exceed m, where m = m(b)  = O(l ln(6)1),6 4 0 such that 1 1  fm - f I]< 6. The 
expansion for f(x, () converges exponentially fast in (, that is, 

00 

f = fm + Bm = XU, Pj$k)APj& + B,, (3.8) 
k; degree .$ism j=l 

where 1 1  Bm 115 6 = O(exp(-m)), as m -+ 00. Also, we assume that for E > 0 
and a given function h(x) = x;, uypj(x), there exists a function M = M ( h ,  S), 
such that, 

M 

h(x) = %%(X) + C(h, 61, (3.9) 
j=1 

where I/ C(h,  E )  (15 6. We are ready to  state  and prove our main result. 
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. *  
c '  

Theorem Let us assume that Tc is a contraction ( 1 1  Tc 115 r ]  < l), that Tc 
commutes with E,' ( 1 1  Ti1 115 c-l), and that  the expansion for f converges 
exponentially fast in c. For a given E > 0, we  choose the finite basis {cpj&}, 1 5 
j 5 M ,  k E J = {(kl, ..., k,) : ki < K } ,  K = I + m, m = m(61), with 1 chosen 
so that ~ ' ( 1  - r])-lc-' Ij f 115 61, 61 = $(1 + &)-'(E)-'& and M = 

T; f,, with b2 = z K - n / 2 ( E ) - 1 e b .  For the Galerkin approximation, u,, 

( 1  uo - '& 115 b-' 1 1  21, - UO l j A 5  € 7  (3.10) 

where 21, = LO CkcJCjhll(s~:(pj$k)(pj~~, and 1 1  u I ~ A >  b 1 1  u 11. The basis 
contains M N  = O(MI Inel") elements; the number of stochastic elements is 
O(l lnE//I lnr]In) = O(l lnEln),  as E -4 0. 

mazkcJ{M(hk, 62)}, where h k ( X )  = aj ,kp j (x) ,  aj,k = (SZ, (pj$k), SZ = 

we obtain 

-1 

proof To demonstrate  the accuracy of u,, it is  sufficient to find an element 
v,, belonging to  the linear span of the finite basis, such that b-l 11 v, - uo /I< E .  

To see this, we use the fact, 1 1  u I I A =  ( A Z L , U ) ~ / ~  > b(u,u) = b /I u 1 1 ,  and the 
inequality, 

II u a  - uo II 5 b-l II U ,  - uo I I A =  b- ' (F(Ua) - F ( ~ o ) ) l / ~ ,  (3.11) 
5 b-l(F(v,) - F(uo))ll2 = b-' 1 1  U, - uo I I A  . 

The second inequality follows  from the fact that ua minimizes F ( u )  over the 
finite basis. It follows that  to establish the required accuracy for the Galerkin 
method we need only produce a v, satisfying 1 1  v, - uo 11~5 be. 

that is,  from equation (3.6) we obtain, 
We  may replace the right-hand side of equation (3.5) with gm = Lo f m ,  

-- 1 

1--1 
uo = (I-Tc)- Lo f = (I-Tc)- ( E-1 0 fm+Lo --l B,) = (I-Tc)-lgm+B, (3.12) 

where 1 1  B 115 (1 - q)-lc-l 1 1  B, 115 (1 - ~ ) - ~ c - ~ b ~ .  Now,  we  choose I > 0 
so large that q2(1 - r])-lc-l 1 1  f 115 61; the first term on the right-hand side of 
expression (3.12) may be written, 

2-1 

( I  - TO- Lo f m  = E T [  f m  + R = Zi'S, + R, (3.13) 1--1 

s=o 

where S2 = T[ f, and R = T[E;' f,. Here, we use the fact that 

Tc and commute. The remainder is bounded by /I R 115 & 11 f, 115 
6 1 1  f 115 61. We have  shown 

uo = Zi1S2 + B + R, (3.14) 

where 1 1  B I( + I /  R 115 b l ( l +  (1 - r])-'c-'). 
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The multinomials in Sl T; f m ,  have degree less than K = 1 + m; T( 
contributes multinomials of degree less than 1 and f m  has degree at most m. 
It follows that  the multinomials in 5'1 may  be expressed in terms of the basis 
elements $ k ( < ) ,  k E J ;  that is, 

(3.15) 
s=o k j=1 

M 

kEJ j = M + 1  

Here, we also use that  the cardinality of J equals K". Setting va = z i l s l , M  
and using inequality (3.16), we obtain for the first term on the right-hand side 
of expression (3.14), 

1 1  Z,-'Sl - 21, 1 1 2 = 1 1  Zi1(S1 - S 1 , M )  [ I 2 <  C- 2 K n 2  62- (3.17) 

Now,  from expressions (3.14) and (3.17), we obtain 

1 1  '110 - va 1 1  I 1 1  - ~0 II + II B II + II R II (3.18) 
1 

62  + 61(1+ ----) = -(-)-I 1 1  f 11 €b, 
C (1 -v )c  2 1-77 

where d l  = $(l+ G ) - l ( g ) - l e b  and 62 = $ K - n / 2 ( E ) - 1 &  

we use the identity AEi' = zo( I  - Tt)zO1 = I - Tc, so that, 
To obtain  an  estimate for 1 1  uo - v, 1 1 ~  we need a bound on 1 1  Av, 11, for this 

1 1  Ava 1 1 = 1 1  A E i l S l , M  11=11 (1- T [ ) S l , M  1 1 < 1 1  1- Tc 1 1 1 1  sl 112 - 11 f 11 . 1+77 
1-77 

(3.19) 
Using the Cauchy inequality 1 1  u l l ~ < l l  Au 1 1 1 1  u 11, together with inequalities 
(3.18) and (3.19), we obtain 

1 1  uo - v, I I A I I I  ~ ( 2 1 0  - va) 1 1 1 1  u. - va 112 (1 + a) II f II -(--)-1fb = Cb, 
(3.20) 

as desired. This  demonstrates that, for this basis, the Galerkin method provides 
the desired accuracy. 

The number of basis elements in this  set is  given  by M N  = MK", where 
N = K" is the cardinality of the index set J .  We recall that K = 1 + m and 
that 1 was  chosen so that v*( 1 - q)-'c-' 1 1  f 1 1  5 61 = O(e), more precisely, 

1 I l f l l  
1 - 7  2 l - v  

(3.19) 
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where 0 5 8 < 1. Now, since m = O(ln61) = O(lnE), as E 4 0, we have 

as E 4 0. We have arrived at the desired conclusion, namely, the number of 
stochastic elements are O(l ln(E)/ln(q)ln) = O(l ln(E)ln), as E 4 0, where E is the 
desired level of precision and n is the dimension of the stochastic space. 

The key step in the proof  is the representation of the solution as a partial  sum 
of the resolvent Tl f .  In  turn,  this function may be expressed as polynomials, 
of  low degree, in the variables ti. 

4 Numerical Results 
We consider a set of stochastic operator problems governed by the equation 

a2 
-(a + PEr)&+,M = f(z),  (4.1) 

for f (x) = 1, f (z) = z and f (z) = 5 + 1 with boundary condition 

u(0) = u(1) = 0. (4-2) 

We define &, to be a truncated Gaussian variable with mean zero.  By a trun- 
cated Gaussian random variable we mean that 

P(& < z) = - 6 /= -7 e-ezde 

for -y < z < y P(I&.yl 2 y) = 0 and, 

-v e-e2 

7 

Jz;; -7 
de = 1. 

The parameters cy, P and y are chosen so that 

P 
-7 < 1, 
cy 

(4.3) 

(4.4) 

(4.5) 

for cy, p, y > 0. We note that a, P and y are not unique. The set of problems 
described by equation (4.1) has the exact solution 

Using the Stochastic-Galerkin method, an approximate solution is introduced 
as 

M N  
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where the ' p j ( x )  = x - d+"s are chosen so that  they satisfy the  boundary 
condition (4.2). Also, we set $'k(&) = [t, and we define the inner  product by 

a - 
3 

2 
3 a  
- a 

-I 
& 
il? 
10 

2 
a - 
- 3 a  

9a 
4 

10 
- 

- a 
2 
4a 
5 
- 
CY 

- a 
2 
4a 
5 
- 
Q 

- 3 a  
5 

CY 

a 

CY 
9a 
7 
- 

Q 
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t 

Therefore, using equation (4.7) we have 

It follows that, 

The first three  terms of the solution given by equation (4.6), when f = 1, are 

(4.13) 

(4.14) 

We note that for ,B << cy, ua'(xc,&) is  close to u(z,J7). This is illustrated in 
figure 1, where the square  root of the variance of u,(x7J7) versus the square 
root of the variance of u(x,t&) for cy = 1, ,O = 1/200 and y = 100 is plotted. 

jn4 Standard  Error Plot for two deterministic terms and three stochastic  terms 

0.e 

0.E 

0.4 

0.2 

( 

I 

I 

i 
I I I I I I I I I 

0.1 0.2 0.3 0.4 0.5 0.6  0.7  0.8 0.9 1 

\ I  
Figure 1 
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t 

for  fixed i and k where i E (1, ..., M }  and k E (0, ..., N } .  If we let M=3 and 
N=2, we obtain the  matrix equation 

f 1/12 

1/6 
2/15 

0 
0 
0 

2/15 
1/12 

\ 1/6 

a3,o = 0; a 3 , ~  = 0; a3,2 = 0. 
Therefore, using equation (4.7) we have 

It follows that, 

Va+a(x, = + 2cu2(6f f2  P4 - 9 P 2 ) 2  ) (x - x3)2. (4.16) 

The first three  terms of the solution given  by equation  (4.6), when f = x, are 

Therefore, 

(4.17) 

(4.18) 
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We note that for ,O << a, ua(x ,  &) is  close to u ( x ,  &). This is illustrated in 
figure 2, where the square  root of the variance of u,(z,&) versus the square 
root of the variance of u(x ,&)  for a = 1, p = 1/200 and y = 100 is plotted. 

3.5 
x lo4 Standard  Error  Plot  for two deterministic  terms  and  three  stochastic  terms 

I I I I 4 I I I 

f=x;  sqrtwar  U(x&J] 

- f=x;  sqrtwar  Ua(x,$)j 

3- 

2.5 - 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Figure 2 

For f = x + 1,  u,(x, &) is equal to  the sum of ua(x ,  &) for f = 1 and & ( X ,  5,) 
for f = x .  Therefore, for f = x + 1, 

2s x2  x3 4px<, Px2t,  P X 3 b  
u,(x,&) = - - - - - - 3a 2a 6a 6a2 - 9p2 + 2a2 - 3p2 6a2 - 9p2 

4P2xg  - p2x2r; - B2X3E:: 

u ( x < ) = - - - - - - -  2 2  x2  x3 2PXJ, px2r,  px3.& 

'a(6a2 - 9p2) a(2a2 - 3p2) cr(6a2 - 9p2). (4.19) 

The first three  terms of the solution given by equation ( 4 4 ,  when f = x + 1, 
are 

' ' 3a 2 0  6a 3a2 2a2 . 6a2 
+-+- 

(4.20) 
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Similairly to  the f = z case, when f = z + 1, the graph of the  square root of the 
variance of u,(z, &) and  the graph of the square root of the variance of u(z, &) 
for CY = 1, p = 11200 and y = 100 are identical up to  the thousandth place, for 
B << ff. 

5 Summary 
The analysis and numerical examples indicate that  the increase in cost, due to 
the stochastic component, is relatively modest, provided the dimension of the 
probability space is not  too large. The approach used, here, is to  treat  the 
combined deterministic and  stochastic problem in a manner analogous to  the 
deterministic case alone, namely, the elements are basis functions for the entire 
cross product space, and the inner products  are  taken with respect to a cross 
product measure. We have  used polynomials for the stochastic finite elements, 
and  the evaluation of the inner product requires only that  the degree of the 
polynomials be less than  the highest known moment of the underlying distri- 
bution. The numerical examples show the rapid convergence of the stochastic 
components in the one dimensional case, in fact, the approximate solutions have 
almost "converged" using only three  stochastic elements. Further,  the analysis 
demonstrates that, for operators satisfying the contraction and commutativity 
assumptions, the stochastic elements converge rapidly in the low dimensional 
case, more precisely, O( I In el") (n is the dimension of the probability space) 
elements provide O(6) accuracy, as E 4 0. In other words, setting E = exp(-tc), 
we have  shown,  for O ( P )  stochastic elements, the error decreases exponentially 
fast, that is, the error is O(exp(-tc)), as IE --+ 00. 
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